

Chang Liu Zhongguancun Academy

北京中美村学院 x 中美村人工智能研究院
Zhongguangun Academy Zhongguangun Institute of Artificial Intelligence

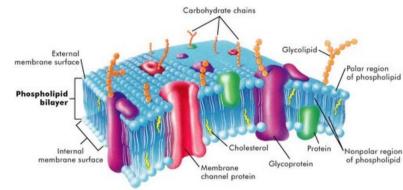
## Computational Methods for Molecular Science 社京中美村学院 x 中美村人工智能研究院 zhongguancun Academy zhongguancun Institute of Artificial Intelligence

#### Molecular science tasks

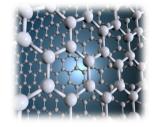
biomolecule understanding

drug design

material/catalyst discovery







#### Computational Methods for Molecular Science 社京中美村学院 x 中美村人工智能研究院 zhongguancun Academy zhongguancun Institute of Artificial Intelligence

Molecular science tasks

Macroscropic properties



Microscopic properties

**Electronic** structure

biomolecule understanding

binding affinity

E

 $\psi(\mathbf{r}_1,\cdots,\mathbf{r}_N)$ 

drug design

stability

 $\epsilon_{\Delta}$ 

 $\{\phi_i(\mathbf{r}_j)\}$ 

material/catalyst

activation energy

 $\rho(\mathbf{r})$ 

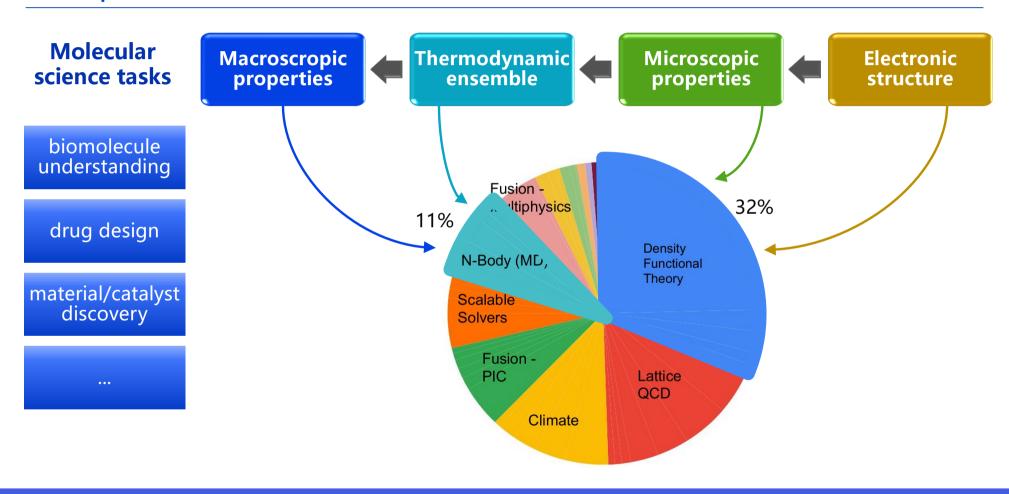
discovery

conductivity





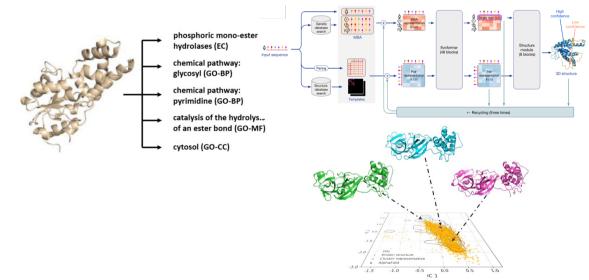
#### Computational Methods for Molecular Science 社京中美村学院 x 中美村人工智能研究院 zhongguancun Academy zhongguancun Institute of Artificial Intelligence



# Macroscropic properties

Macroscopic property prediction:

scalability



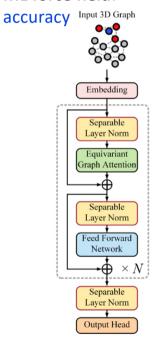
Thermodynamic ensemble

Structure prediction and sampling:

accuracy & scalability

# Microscopic properties

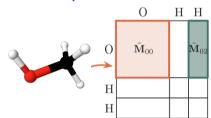
ML force field:



**Electronic structure** 

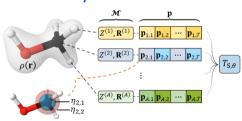
#### **Hamiltonian prediction:**

scalability



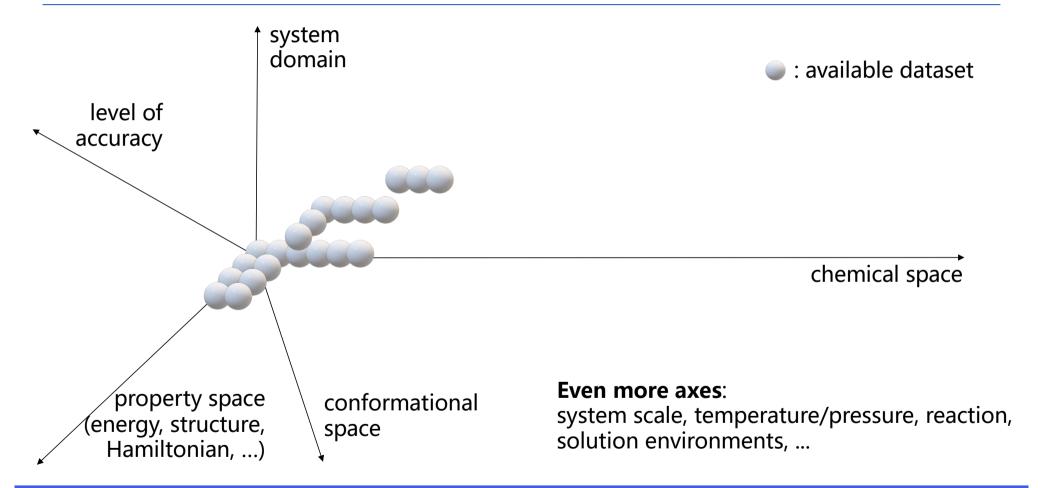
#### Learned functional:

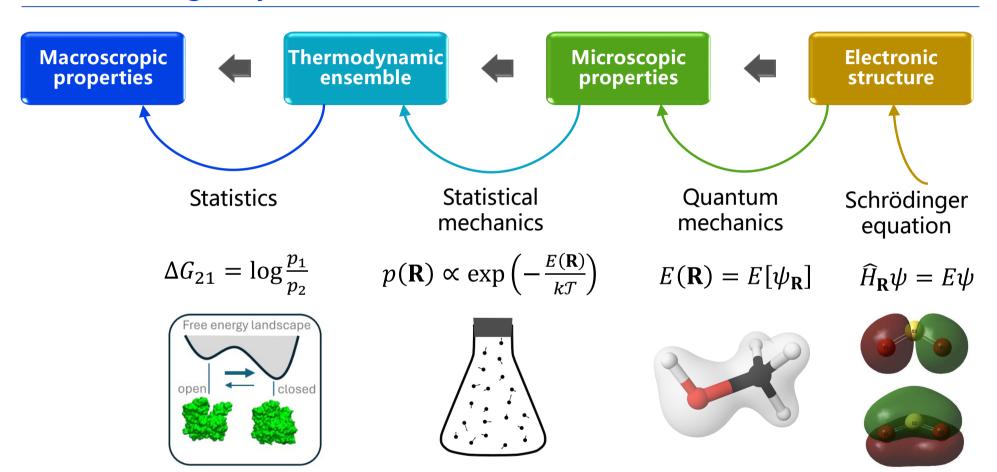
accuracy



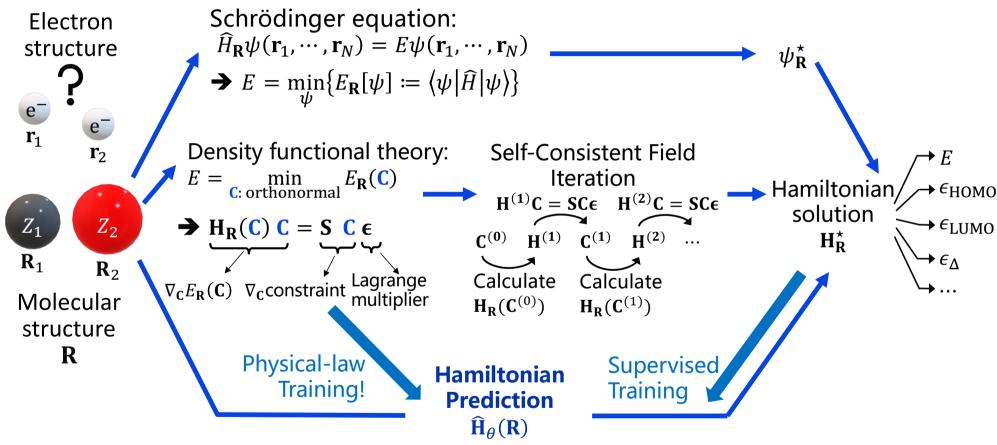
#### The Curse: Data Scarcity

北京中美村学院 × 中美村人工智能研究院 Zhongguancun Academy Zhongguancun Institute of Artificial Intelligence





#### **Electronic Structure**



Zhang et al. Self-Consistency Training for Density-Functional-Theory Hamiltonian Prediction. ICML, 2024.

Self-consistency training for Hamiltonian prediction:

$$L_{\text{self\_con}}(\theta) = \left\| \widehat{\mathbf{H}}_{\theta}(\mathbf{R}) - \mathbf{H}_{\mathbf{R}} \left( \mathbf{C}_{\mathbf{R}} \left( \widehat{\mathbf{H}}_{\theta}(\mathbf{R}) \right) \right) \right\|_{\mathbf{F}}^{2}.$$

- Label-free: distinction from predicting other properties.
- Not just a regularization: it fully **determines** the solution.

## Physical-Law Training for Electronic Structure

北京中美村学院 × 中美村人工智能研究院
Zhongguancun Academy Zhongguancun Institute of Artificial Intelligence

· Generalization beyond available data

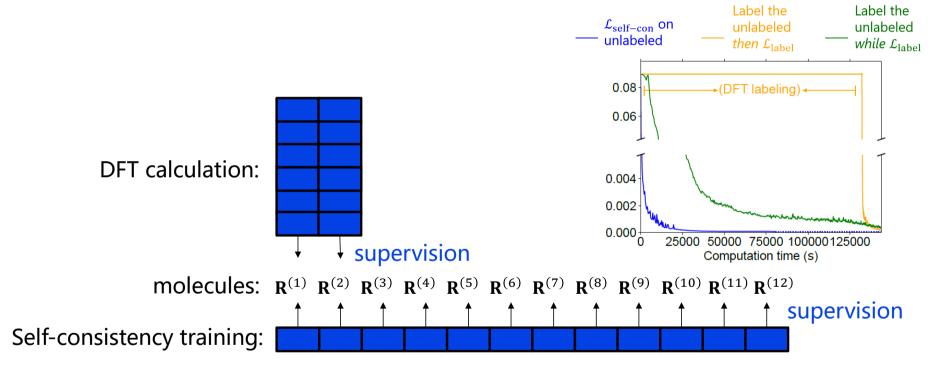
Largest labeled dataset (≤ 31 atoms) + unlabeled molecules → test on larger molecules

|                 |           | Hamiltonian                                           |                                                       |                | Derived prop                                                        | erties                                                      |                                                             |
|-----------------|-----------|-------------------------------------------------------|-------------------------------------------------------|----------------|---------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| Molecule        | Setting   | $\mathbf{H}\left[\mu E_{\mathrm{h}}\right]\downarrow$ | $\epsilon \left[\mu E_{\mathrm{h}}\right] \downarrow$ | <b>C</b> [%] ↑ | $\epsilon_{\mathrm{HOMO}}\left[\mu E_{\mathrm{h}}\right]\downarrow$ | $\epsilon_{ m LUMO} \left[ \mu E_{ m h} \right] \downarrow$ | $\epsilon_{\Delta} \left[ \mu E_{\rm h} \right] \downarrow$ |
| ALA3 (42 atoms) | zero-shot | 237.71                                                | $6.54 \times 10^3$                                    | 52.24          | $6.90 \times 10^3$                                                  | $9.51 \times 10^4$                                          | $9.79 \times 10^4$                                          |
|                 | self-con  | <b>52.49</b>                                          | $1.22 \times 10^3$                                    | <b>94.46</b>   | <b>2.07</b> × $10^3$                                                | $3.76 \times 10^3$                                          | <b>2.69</b> × $10^3$                                        |
| DHA (56 atoms)  | zero-shot | 397.87                                                | $1.84 \times 10^4$                                    | 20.15          | $1.11 \times 10^4$                                                  | $1.90 \times 10^5$                                          | $1.85 \times 10^5$                                          |
|                 | self-con  | <b>56.12</b>                                          | $1.81 \times 10^3$                                    | <b>83.51</b>   | $1.99 \times 10^3$                                                  | <b>4.01</b> ×10 <sup>3</sup>                                | $2.34 \times 10^3$                                          |

#### Physical-Law Training for Electronic Structure

北京中美村学院 × 中美村人工智能研究院 Zhongguancun Academy Zhongguancun Institute of Artificial Intelligence

· Amortization effect: more efficient than running DFT to generate labels.



### Physical Law for Microscopic Properties

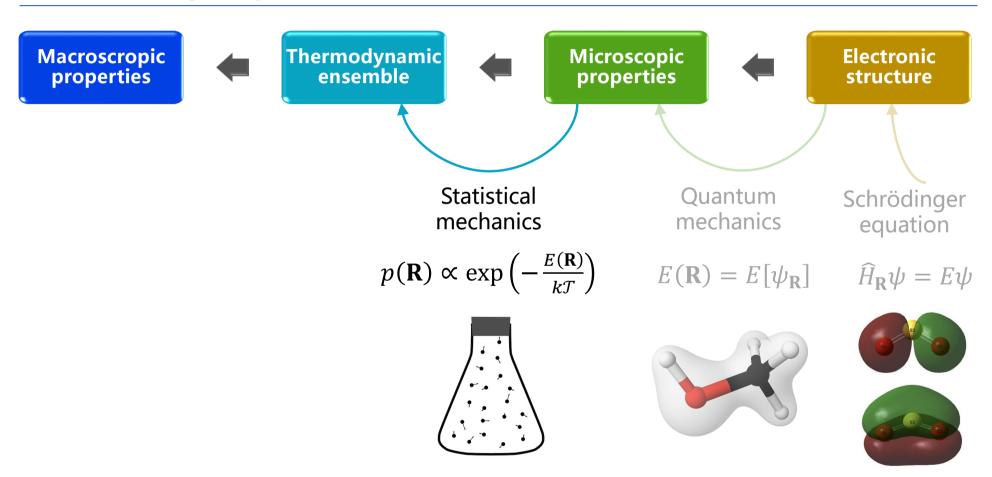
北京中美村学院 × 中美村人工智能研究院 Zhongguancun Academy Zhongguancun Institute of Artificial Intelligence

· Passing physical-law information to microscopic properties

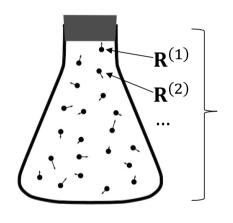
labeled dataset (≤ 31 atoms) + unlabeled molecules → test on larger molecules

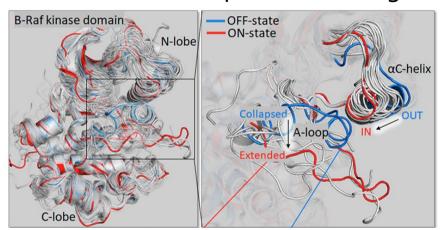
| Molecule           | Setting                      | $\epsilon_{\mathrm{HOMO}}\left[\mu E_{\mathrm{h}}\right]\downarrow$ | $\epsilon_{ m LUMO} \left[ \mu E_{ m h} \right] \downarrow$ | $\epsilon_{\Delta} \left[ \mu E_{\mathrm{h}} \right] \downarrow$ |
|--------------------|------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------|
|                    | self-con                     | $2.07 \times 10^3$                                                  | $3.76 \times 10^3$                                          | $2.69 \times 10^3$                                               |
| ALA3<br>(42 atoms) | e2e (ET)<br>e2e (Equiformer) | $1.74 \times 10^5$<br>$2.38 \times 10^5$                            | $7.72 \times 10^3$<br>$1.16 \times 10^4$                    | $2.38 \times 10^5$<br>$2.27 \times 10^5$                         |
|                    | self-con                     | 1.99×10 <sup>3</sup>                                                | 4.01×10 <sup>3</sup>                                        | $2.34 \times 10^3$                                               |
| DHA<br>(56 atoms)  | e2e (ET)<br>e2e (Equiformer) | $2.92 \times 10^5$<br>$3.76 \times 10^5$                            | $2.58 \times 10^4$<br>$2.31 \times 10^4$                    | $3.39 \times 10^5$<br>$4.17 \times 10^5$                         |

gguancun Academy Zhongguancun Institute of Artificial Intell



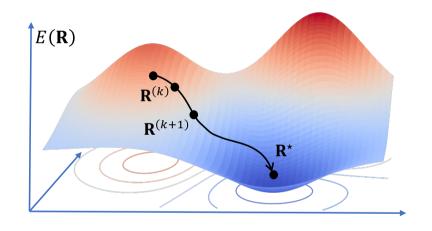
- A molecule exists in real world with structures **R** following a distribution.
  - More detailed description/knowledge

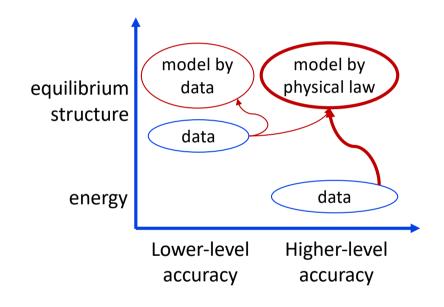




https://en.wikipedia.org/wiki/ Ensemble\_(mathematical\_physics)

### Data Heterogeneity: Energy and Equilibrium Structure to Red Chongguancun Academy x 中美材入工智能研究院 Chongguancun Academy X 中美材入工智能研究院 Chongguancun Academy X 中美材入工智能研究院 Chongguancun Academy X 中美材入工智能研究院 Chongguancun Institute of Artificial Intelligence





#### Connection between Structure and Energy

· Optimality consistency:

$$\mathbf{R}^{\star} = \operatorname*{argmin}_{\mathbf{R}} E(\mathbf{R})$$

$$\min_{\theta} \mathbb{E} \max\{0, E(\mathbf{R}_{\theta}^{\star}) - E(\mathbf{R}_{\theta}^{\star} + \mathbf{\eta})\}.$$

$$\mathbf{D}_{\theta}(\boldsymbol{\epsilon}, t) \text{ for large } t \approx T.$$

· Score consistency:

$$\mathbf{R}^* \sim \exp\left(-\frac{E(\mathbf{R})}{kT}\right)$$
 for small  $\mathcal{T}$ 

Score consistency. 
$$\mathbf{R}^{\star} \sim \exp\left(-\frac{E(\mathbf{R})}{k\mathcal{T}}\right) \text{ for small } \mathcal{T} \implies \min_{\theta} \mathbb{E}_{\mathbf{R}} \left\| \nabla \log p_{\theta}(\mathbf{R}) + \frac{\nabla E(\mathbf{R})}{k\mathcal{T}} \right\|^{2}.$$
 
$$\frac{\alpha_{t} \, \mathbf{D}_{\theta}(\mathbf{R}, t) - \mathbf{R}}{\sigma_{t}^{2}} \text{ for small } t \approx 0$$

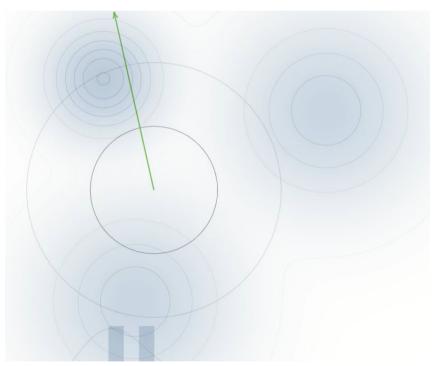
#### **Evaluation**:

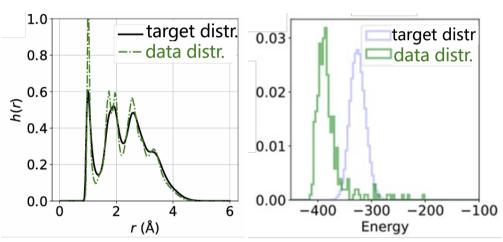
error w.r.t high-accuracy structure

|           | Test Set                                               | PCQ                   |                       | QM9                   |                       |
|-----------|--------------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|           | Struct. Stat.                                          | Mean                  | Min                   | Mean                  | Min                   |
| Training: | low-accuracy structure data +high-accuracy energy data | 1.189<br><b>1.158</b> | 0.655<br><b>0.645</b> | 0.928<br><b>0.848</b> | 0.545<br><b>0.490</b> |

Ren et al. Physical Consistency Bridges Heterogeneous Data in Molecular Multi-Task Learning. *NeurIPS*, 2024.

• Data are biased from finite-length simulation





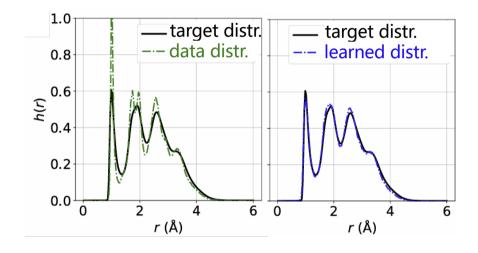
- Energy function defines the target:  $p_0(\mathbf{R}_0) \propto \exp\left(-\frac{E(\mathbf{R}_0)}{kT}\right)$ .
- Diffusion-model learning target:

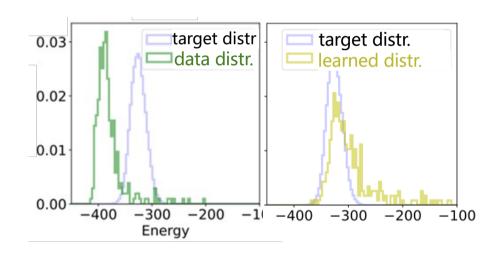
$$\mathbf{s}_{\theta}(\mathbf{R}_{t},t) \rightarrow \underset{\theta}{\operatorname{argmin}} \mathbb{E}_{p_{0}(\mathbf{R}_{0})p(\mathbf{R}_{t}|\mathbf{R}_{0})} \left\| \mathbf{s}_{\theta}(\mathbf{R}_{t},t) - \frac{1}{\alpha_{t}} \nabla \log p_{0}(\mathbf{R}_{0}) \right\|^{2}.$$

$$\mathbf{s}_{\theta_{\text{debiased}}}(\mathbf{R}_{t},t) \rightarrow \underset{\text{data distribution}}{\approx q(\mathbf{R}_{0})} - \frac{\nabla E(\mathbf{R}_{0})}{kT}$$

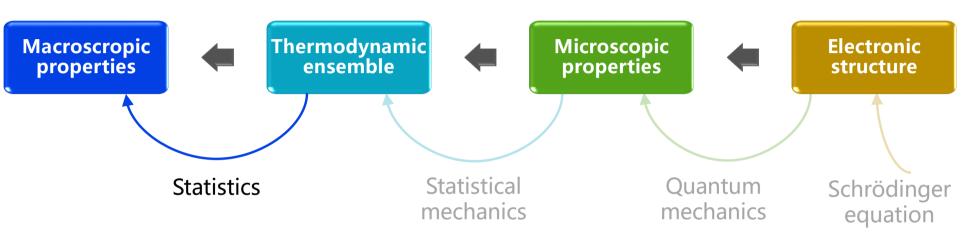
• Energy function corrects data bias:

$$\left\|\mathbf{s}_{\theta_{\text{debiased}}}(\mathbf{R}_t, t) - \nabla \log p_t(\mathbf{R}_t)\right\|^2 \leq \left\|\mathbf{s}_{\theta_{\text{data}}}(\mathbf{R}_t, t) - \nabla \log p_t(\mathbf{R}_t)\right\|^2.$$

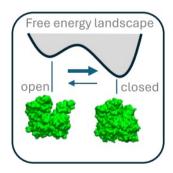




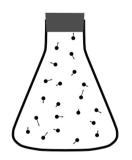
Guo et al. Potential Score Matching: Debiasing Molecular Structure Sampling with Potential Energy Guidance. TMLR, 2025.



$$\Delta G_{21} = \log \frac{p_1}{p_2}$$



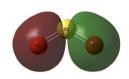
 $p(\mathbf{R}) \propto \exp\left(-\frac{E(\mathbf{R})}{kT}\right)$   $E(\mathbf{R}) = E[\psi_{\mathbf{R}}]$   $\widehat{H}_{\mathbf{R}}\psi = E\psi$ 



$$E(\mathbf{R}) = E[\psi_{\mathbf{R}}]$$



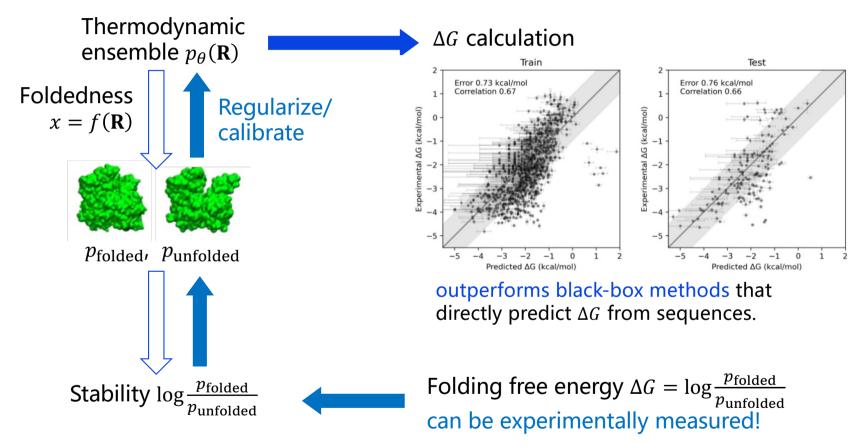
$$\widehat{H}_{\mathbf{R}}\psi = E\psi$$





#### Stability Calculation from Ensemble Model

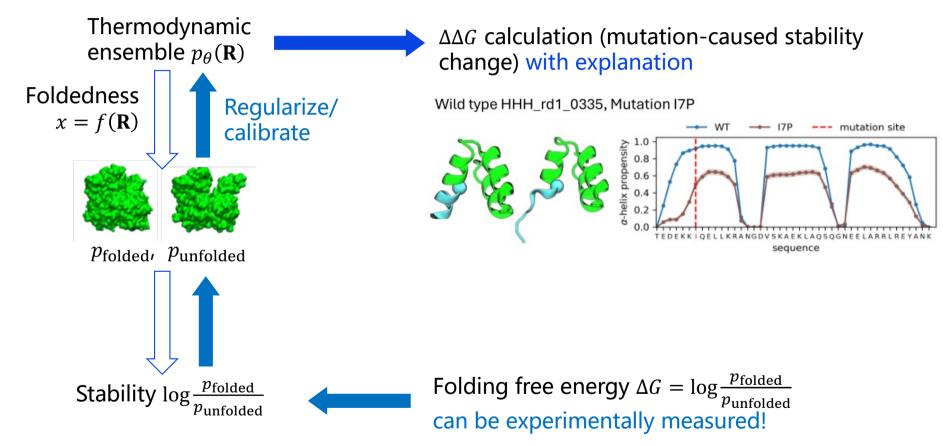
北京中美村学院 × 中美村人工智能研究院 Zhongguancun Academy Zhongguancun Institute of Artificial Intelligence



Lewis et al., Scalable emulation of protein equilibrium ensembles with generative deep learning, Science, 2025.

#### Stability Calculation from Ensemble Model

北京中美村学院 × 中美村人工智能研究院 Zhongguancun Academy Zhongguancun Institute of Artificial Intelligence



Lewis et al., Scalable emulation of protein equilibrium ensembles with generative deep learning, Science, 2025.

### Physical Law: Reasoning in Scientific Computing Law: Reasoning in Scientific Computing Language Academy x 中美村人工 Language Languag

